Allele frequency distribution under recurrent selective sweeps.
نویسنده
چکیده
The allele frequency of a neutral variant in a population is pushed either upward or downward by directional selection on a linked beneficial mutation ("selective sweeps"). DNA sequences sampled after the fixation of the beneficial allele thus contain an excess of rare neutral alleles. This study investigates the allele frequency distribution under selective sweep models using analytic approximation and simulation. First, given a single selective sweep at a fixed time, I derive an expression for the sampling probabilities of neutral mutants. This solution can be used to estimate the time of the fixation of a beneficial allele from sequence data. Next, I obtain an approximation to mean allele frequencies under recurrent selective sweeps. Under recurrent sweeps, the frequency spectrum is skewed toward rare alleles. However, the excess of high-frequency derived alleles, previously shown to be a signature of single selective sweeps, disappears with recurrent sweeps. It is shown that, using this approximation and multilocus polymorphism data, genomewide parameters of directional selection can be estimated.
منابع مشابه
Patterns of neutral diversity under general models of selective sweeps.
Two major sources of stochasticity in the dynamics of neutral alleles result from resampling of finite populations (genetic drift) and the random genetic background of nearby selected alleles on which the neutral alleles are found (linked selection). There is now good evidence that linked selection plays an important role in shaping polymorphism levels in a number of species. One of the best-in...
متن کاملPrevalence of negative frequency-dependent selection, revealed by incomplete selective sweeps in African populations of Drosophila melanogaster
Positive selection on a new beneficial mutation generates a characteristic pattern of DNA sequence polymorphism when it reaches an intermediate allele frequency. On genome sequences of African Drosophila melanogaster, we detected such signatures of selection at 37 candidate loci and identified "sweeping haplotypes (SHs)" that are increasing or have increased rapidly in frequency due to hitchhik...
متن کاملPopulation differentiation as a test for selective sweeps.
Selective sweeps can increase genetic differentiation among populations and cause allele frequency spectra to depart from the expectation under neutrality. We present a likelihood method for detecting selective sweeps that involves jointly modeling the multilocus allele frequency differentiation between two populations. We use Brownian motion to model genetic drift under neutrality, and a deter...
متن کاملLinkage disequilibrium as a signature of selective sweeps.
The hitchhiking effect of a beneficial mutation, or a selective sweep, generates a unique distribution of allele frequencies and spatial distribution of polymorphic sites. A composite-likelihood test was previously designed to detect these signatures of a selective sweep, solely on the basis of the spatial distribution and marginal allele frequencies of polymorphisms. As an excess of linkage di...
متن کاملPredicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele
Methods for detecting the genomic signatures of natural selection have been heavily studied, and they have been successful in identifying many selective sweeps. For most of these sweeps, the favored allele remains unknown, making it difficult to distinguish carriers of the sweep from non-carriers. In an ongoing selective sweep, carriers of the favored allele are likely to contain a future most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 172 3 شماره
صفحات -
تاریخ انتشار 2006